УДК 532.5+620

ВОЛНО-ЭНЕРГЕТИЧЕСКИЙ ПОТЕНЦИАЛ КАСПИЯ

А. М. Агаларов, М. М. Гусейнов, И. К. Камилов

Институт физики им. Х.И. Амирханова ДНЦ РАН

На основе модели смешанного морского волнения, учитывающей реальные составляющие спектра волн, дана оценка волно-энергетического потенциала акваторий северо-западного побережья Каспия.

The mixed sea swell model with discrete and continual spectral components is considered. The wave-energy potential of the Caspian Sea western region is given. Taken into account is the realistic data of the sea swell waves.

Ключевые слова: спектральная модель; смешанные волны; Каспийское море; волно-энергетический потенциал.

Keywords: spectral model; swell waves; Caspian Sea; wave energy potential.

Введение

Проблемам развития мировой энергетики на базе новых экологически чистых технологий уделяется значительное внимание [1-3]. В этом плане перспективной является энергия морских волн, которая представлена в природе в наиболее сконцентрированном виде [2]. Преимущество морских волн – это их повсеместность и незатухающий характер, что, в принципе, доступно всем прибрежным странам [3]. Морское волнение в конкретной зоне интегрирует эффект предшествовавших ветров и является естественным источником возобновляемой энергии.

В современных моделях морского волнения (ММВ) достигнуто глубокое понимание сложных процессов, протекающих на границе между водной поверхностью и атмосферой [4-6]. Морское волнение обычно разделяют на три типа [7]: ветровые волны (BB), которые зарождаются под воздействием ветра; волны зыби (B3), наблюдаемые после выхода волн из зоны действия ветра или после его прекращения; смешанное волнение (СВ), которое возникает как результат сложения волновых полей ВВ и ВЗ. Поле СВ является пространственнонеоднородным и существенно изменчивым во времени, поскольку составляющие его волны могут прийти в данную точку одновременно из разных зон зарождения [8]. В [4] показано, что между волновыми системами ВВ и ВЗ имеется существенно нелинейная связь, наблюдаемая в их динамике как непрерывная перекачка энергии от высокочастотных к низкочастотным областям спектра. Следует также отметить, что из-за высокой чувствительности смешанного волнового поля к многообразию ветровых факторов в расчетах волновой энергии возникают значительные расхождения [3]. Например, при определении скорости ветра на уровне 15% ошибка в расчете высоты волн может составить ≈ 30%, а в оценке энергии волн - 70% и выше [3, 8]. В этой связи задача оценки потенциала частности энергии волновой энергии, в сложных волн Каспия [9-13], представляет значительный интерес. Практическая составляющая задачи связана с перспективой создания инновационной морской индустрии в портовых городах России [14].

В данной работе на основе модели смешанного морского волнения, с учетом наблюдаемых на волноизмерительных платформах реальных спектров ВВ и ВЗ, дается оценка волно-энергетического потенциала северо-западных акваторий Каспия.

Модель смешанного волнения и спектральные плотности ВВ и ВЗ

Рассмотрим модель смешанного морского волнения [15], включающей гармонические компоненты конечной амплитуды:

$$\mathbf{X}(t) = \mathbf{X}_a(t) + \mathbf{X}_A(t),$$

где

$$\boldsymbol{x}_{a}(t) = \boldsymbol{x}_{n}(t)_{n \to \infty}, \boldsymbol{x}_{A}(t) = \sum_{j=1}^{N} \operatorname{Re}\left\{A_{j} \exp\left[i(\boldsymbol{\Omega}_{j}t + \boldsymbol{q}_{j})\right]\right\}$$

представляют собой слагаемые случайного процесса (1).

Из теории волн на поверхности тяжелой жидкости известно [6, 16], что установившееся нерегулярное волнение может быть изучено (как стационарный случайный процесс) в представлении стохастических интегралов Фурье – Стилтьеса:

$$\xi(x,y,t) = \iint_{-\chi}^{\chi} e^{-i(k_x x + k_y y - \sqrt{gk}t)} \sqrt{k/g} d^2 Y(k_x,k_y).$$

Здесь интегрирование производится по всей плоскости волновых чисел k, $\xi(\mathbf{r},t)$ - произвольные стационарные случайные функции, $d^2Y(k) = d^2Y_1(k) + (i/\sqrt{gk})d^2Y_2(k)$, где $Y_n(k)$ - случайные амплитуды с независимыми приращениями (n = 1.2), g - ускорение свободного падения. Математическое ожидание произведения дифференциалов случайных функций $Y_n(\mathbf{k})$ и спектральные плотности $S_n(k)$ связаны соотношением [7, $M^5[dY_n(k)dY_n^*(k)] = \frac{1}{2p}S_n(k)d(k-k')dkdk'$, (2)

где $\delta(y)$ – дельта-функция Дирака, $S_n(k)$ – спектральные плотности энергии. Для двух точек волнового профиля в моменты времени t и t + τ находим

для двух точек волнового профиля в моменты времени с и с + с находим математическое ожидание произведения волновых аппликат

$$R(\eta, \tau) = M\{\xi(x, t)\xi(x + \eta, t + \tau)\}.$$
(3)

Здесь и далее (для удобства) координату у фиксируем. Временная корреляционная функция R(0, t) для модели (1) принимает вид:

$$R(\mathbf{0},\tau) = R_{aa}(\mathbf{0},\tau) + \frac{1}{2} \sum_{j=1}^{N} A_{j}^{2} \cos\Omega_{j}\tau, \qquad (4)$$

а спектральная плотность процесса (1) дается обратным Фурье-преобразованием $R(0,\tau)$:

$$S_{\xi}(\Omega) = S_a(\Omega) + \frac{1}{2} \sum_{i=1}^{N} A_i^2 \delta(\Omega - \Omega_i).$$
⁽⁵⁾

Отсюда видно, что спектр морского волнения в рамках модели (1) является дискретно-непрерывным. При этом ветровое волнение, спектральные свойства которого близки соответствующим характеристикам ветра, описывается первым слагаемым, а волны зыби, распространяющиеся достаточно далеко от источника возмущения, – вторым слагаемым. При условии реализации конечной длительности времени ($\tau > \tau_{max}$) интегральные спектральные плотности непрерывной и дискретной составляющих случайного процесса (1) определяются выражениями:

$$S_{a}(\Omega, \tau > \tau_{\max}) = \frac{2}{\pi} \int_{0}^{t_{\max}} R_{a}(0, \tau) \cos(\Omega \tau) d\tau;$$
$$S_{A}(\Omega, \tau > \tau_{\max}) = \frac{\tau_{\max}}{2} \sum_{j=1}^{N} A_{j}^{2} |\sin C^{+} - \sin C^{-}|,$$
(6)

 $\sin C^{\pm} = \sin[(\Omega \pm \Omega_i)\tau_{\max}] / (\Omega \pm \Omega_i)\tau_{\max}.$

Модельные спектры и реальные волновые режимы

Известно, что волны Каспия быстро развиваются и затухают, волнение часто носит непредсказуемый характер и в целом Каспийское море неспокойное [8, 17]. Наиболее активной является западная половина Среднего Каспия. Здесь сильные ветры при больших

(1)

глубинах вызывают крупные волны, в частности, при северных ветрах со скоростью 25 м/с они достигают 11-12 м высоты и около 200 м длины. После штормовых ветров в Среднем и Южном Каспии развивается крупная зыбь. Отметим также, что многочисленные натурные данные [17] указывают на смешанный характер реального волнения и на наличие в спектре вкладов ВВ и ВЗ, распространяющихся в различных направлениях.

На рис. 1 приведен типичный спектр смешанного волнения, где различимые максимумы соответствуют двум характерным системам волн ВВ и ВЗ Каспия [18].

Спектральный метод позволяет определить поток энергии смешанного волнения, распространяющегося в произвольном направлении, если известны двумерные спектры $S_j(\Omega, \theta)$ составляющих волновых систем. На практике для приближенных вычислений часто допускается независимость углового и частотного распределений спектральной плотности волнения

$$S_{\xi}(\Omega, \theta) = S_{\xi}(\Omega) S_{\xi}(\theta)$$

 $S_{\xi}(\theta) = 2\pi^{-1}\cos^2\theta, \quad \theta \in \left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\}.$

причем угловое распределение для простых условий волнения аппроксимируется формулой [7]:

(8)

(7)

С учетом выражений (7) и (8) поток волновой энергии в двумерном обобщении может быть представлен в виде:

$$< N >= \int_{0}^{\infty} \int_{\{q\}} \frac{rg}{2\Omega} \sum_{j=a,A} S_j(q) S_j(\Omega) dq d\Omega$$

Отсюда при условии, что зависимость (8) справедлива как для непрерывной (*j* = *a*), так и для дискретной (*j* = A) составляющих модели (1), получаем общий поток энергии волнения:

$$\langle N \rangle = \int_{0}^{\infty} \frac{rg}{2\Omega} \left[S_a(\Omega) + S_A(\Omega) \right] d\Omega$$
 (9)

Из формулы (9) видно, что точность оценки потока волновой энергии зависит от вида спектральной плотности и от адекватности ее всем стадиям развития волнения моря.

На основании обработки многочисленных экспериментальных исследований установлено [7, 8], что частотный спектр ветрового волнения в гравитационном интервале может быть аппроксимирован выражением:

$$S_{a}(\Omega) = \gamma_{\varepsilon} [G(r,l)/\Omega_{m}](\Omega/\Omega_{m})^{-l} \exp[-\frac{l}{r} (\Omega_{m}/\Omega)^{r}]$$
(10)

где γ_ξ – дисперсия возвышения поверхности моря, $\Omega_{\rm m}$ – круговая частота, соответствующая максимуму спектра,

$$G(r,l) = r/\left[\Gamma\left(\frac{l-1}{r}\right)\left(l/r\right)^{\frac{l-1}{r}}\right].$$

Здесь параметры γ_{ξ} , Ω_m , *l*, *r* определяются гидрометеорологическими условиями в области измерения морского волнения. Воспользовавшись формулами (9) и (10) для определения вклада ветровых волн в общий поток волновой энергии, получаем:

$$<\bar{N}_{a}>=\frac{rg^{2}}{2}\int_{0}^{\infty}S_{a}(\Omega)\frac{d\Omega}{\Omega}=\frac{C_{0}}{r}(r/l)^{l/r}\int_{0}^{\infty}y^{l/r-1}e^{-y}dy=\frac{C_{0}}{l}(l/r)^{l-l/r}\Gamma(l/r),$$
(11)

где $C_0 = \rho g^2 (2\Omega_m)^{-1} G(r, 1) \gamma_{\xi}$, причем максимальная частота Ω_m и дисперсия возвышения поверхности моря γ_{ξ} в линейном приближении могут быть определены через среднестатистические значения наблюдаемых высот \bar{h} и периодов $\bar{\tau}$ волн [8, 17]:

$$\gamma_{\xi} = \bar{h}^2 / 2\pi, \ \Omega_m = 2\pi W / \bar{\tau}, \ W = \Omega_m / \bar{\Omega}.$$
(12)

Аналогично для определения вклада волн зыби, с учетом предложенной в [7] аппроксимации частотного спектра

$$S_A(\Omega) = \frac{c_1 \bar{h}^2}{\bar{\tau}^m \Omega^n} \exp\left[-\frac{c_2}{(\bar{\tau}\Omega)^m}\right],\tag{13}$$

находим:

(14)

Волно-энергетический потенциал Каспия

Оценим в рамках рассмотренной модели волнения ресурсы волновой энергии на прибрежной акватории Каспийского моря. Для расчетов воспользуемся эмпирическим спектром ВВ Крылова – Пирсона – Московица [6, 11]:

 $S_a(\Omega) = 0.0795 \bar{h}^2 \bar{\tau} (\overline{\Omega} / \Omega)^7 \exp[-0.785 (\overline{\Omega} / \Omega)^4]$

(15)

и спектром ВЗ по данным И.Н. Давидана [7]:

 $S_A(\Omega) = 2.87.10^3 \bar{h}^2 (\tau \Omega)^{-5} exp[-3.6 \cdot 10^3 (\bar{\tau} \Omega)^{-5}].$

Сравнивая выражения (10) с (15) и (13) с (16), можно увидеть, что параметры спектров, определяющих формулы (11) и (14), составляют: l = 7; r = 4; $W \approx 0.82$; $C_1 = 2.87 \cdot 10^3$; $C_2 = 3.6 \cdot 10^3$; m = 5; n = 6.

С учетом этих значений и величин ρ =1012 кГ·м $^{-3}$ (для Каспия) и g = 9.81 м·с $^{-2}$, а также линейных соотношений (12) находим

$$\langle \overline{N}_{CB} \rangle = 2.84 \overline{h}^2 \overline{\tau}$$

где средние высоты \bar{h} и периоды $\bar{\tau}$ смешанного волнения (CB) определены как алгебраическая сумма высот (и периодов) ВВ и ВЗ:

 $\overline{h} = \sqrt{\overline{h}_B{}^2 + \overline{h}_3{}^2}$ (аналогично для $\overline{\tau}$). Вклады от ветровых волн и волн зыби соответственно составляют: $< \overline{N}_{\rm BB} > = 1.39 \overline{h}_B{}^2 \overline{\tau}_{\rm B}$, $< \overline{N}_{\rm B3} > = 1.44 \overline{h}_3{}^2 \overline{\tau}_3$.

(18)

На рис. 2 и 3 представлены соответственно 0.5-1.0 м (t - время года в годовая зависимость обеспеченности высоты смешанных волн и повторяемость периодов волн на акваториях западного побережья Каспийского моря [8, 13, 17, 18]. Видно, что обеспеченность высот волн с градацией 0.1-0.5 м достигает 80%

Рис. 3. Повторяемость периодов волн Каспия

обратная. 4 Ha рис. представлен атлас суммарного энергетического потенциала ВВ и ВЗ на акватории западного побережья Каспия. Для получения среднего за сезон потока волновой энергии, значения потока, отвечающие определенному соче-

высоты

h_i и

танию

Обсепеченность h, %

(и выше) в летний период и ~70% в зимние периоды, в то время как для градации 0.5-1.0 м - тенденция

(16)

 $<\bar{N}_A>=\frac{\rho g^2}{2}\frac{c_1\bar{h}^2}{\bar{\tau}^m}\int_0^\infty e^{-\frac{C_2}{(\bar{\tau}\Omega)^m}}\frac{d\Omega}{\Omega^{n+1}}=\frac{\rho g^2\bar{h}^2}{2m\bar{\tau}^{m-n}}\frac{c_1}{c_1^{n/m}}\Gamma(n/m).$

Рис. 2. Обеспеченность высот волн на акваториях северозападного побережья Каспия: верхние кривые для градации h = 0.1-0.5 м, нижние – для h = 0.5-1.0 м (t – время года в

Jepően

26

периода τ_i , умножаются на повторяемость за сезон и суммируются. Значения волнового потенциала на атласе даны в единицах 10^4 кВт·ч. Как видно, ресурсы волновой энергии за год в отдельных районах береговой полосы Каспия, для характерных средних величин <h> = 0.5 м и <T> = 1.7 с, достигают максимального значения ~ $1.057 \cdot 10^4$ кВт·ч на 1 погонный метр волнового фронта.

Заключение

Рассмотрена модель смешанного морского волнения, учитывающая спектральные вклады ветровых волн и волн зыби одновременно. Ветровые волны аппроксимированы эмпирическим спектром Крылова – Пирсона – Московица, а волны зыби – спектром И.Н. Давидана. Общий поток волновой энергии определяется интегралом спектральных плотностей от волнообразующих систем полей. С учетом многолетних натурных данных о режимах морских волн оценены ресурсы волновой энергии и составлен атлас волно-энергетического потенциала акваторий западного побережья Каспия.

Длина российской береговой линии Каспийского моря - 530 км. В расчете на 1/4 часть этой длины (Махачкала - Дербент) волно-энергетический потенциал Каспия равен ≈ 1.4·10⁹ кВт·ч в год. Таким образом, при КПД одиночного конвертора поплавкового типа ≈ 0.3, многорядная модульная архитектура конверторов («каспийская решетка») на этой полосе способна выработать «зеленую» энергию, эквивалентную потенциалу действующих ГЭС РД (~4.5 млрд кВт·ч в год), а также решить проблему защиты берега.

ЛИТЕРАТУРА

1. Numerical benchmarking study of a selection of wave energy converters / A. Babarit, J. Hals, M.J. Muliawan, A. Kurniawan, T. Moan, J. Krokstad // Renewable Energy. 2012. Vol. 41. P. 44-63. 2. Falnes J. Ocean waves and oscillating systems. Cambridge University Press (USA), 2009. 340 p. 3. Janssen P.A.E.M. Progress in ocean weve forecasting // J. Comp. Phys. 2008. Vol. 227. P. 3572-3594. 4. Coexistence of Weak and Strong Wave Turbulence in a Swell Propagation / V.E. Zakharov, A.O. Korotkevich, A.N. Pushkarev, D. Resio // Phys. Rev. Lett. 2007. Vol. 99. P. 164501 - 4. 5. Cavaleri L. et al. The (WISE Group). Wave modeling -The State of the art // Progress in Oceanography. 2007. Vol. 75. P. 603-674. 6. Полников В.Г. Нелинейная теория случайного поля на воде. М.: Ленанд, 2007. 408 с. 7. Давидан И.Н., Лопатухин Л.И., Рожков В.А. Ветровое волнение в Мировом океане. Л.: Гидрометеоиздат, 1985. 289 с. 8. Абузяров З.К. Роль водного баланса Каспийского моря // Тр. Гидрометцентра России. 2006. Вып. 341. С. 3-27. 9. Glendening J. Ocean wave power // Appl. Energy. 1977. Vol. 3. Is. 3. P. 197-208. 10. Матушевский Г.В. Оценка энергозапасов ветрового волнения в морях СССР. М., 1982. 9 c. 11. Крылов Ю.М. Спектральные методы исследования и расчеты ветровых волн. Л.: Гидрометеоиздат, 1966. 256 с. 12. Сичкарев В.И. Волно-энергетические ресурсы и их использование // Методы преобразования энергии океана. Владивосток: ДВНЦ АН СССР, 1983. С. 72-80. 13. Ахмедов Р.Б., Агаларов А.М.-З., Ибрагимов А.М. Возобновляемые источники энергии // Тр. ЭНИН им. Г.М. Кржижановского. М., **1987**. С. **32-37**. 14. Морская доктрина Российской Федерации на период до 2020 г. М.: Изд-во ГУНИО МО PΦ, 2002. C. 3-25. 15. Агаларов А.М., Гусейнов М.М. О модели морского волнения с реальным спектром волн // Фундаментальная и прикладная гидрофизика. 2013. Т. 6, № 3. (В печати). 16. Уизем Дж. Линейные и нелинейные волны. М.: Мир, 1977. 624 с. 17. Справочные данные по режиму ветра и волнения Баренцева, Охотского и Каспийского морей // под ред. Л.И. Лопатухина и др. СПб.: РМРС, 2003. 214 с.

18. Амбросимов С.А., Амбросимов Е.С. Экспериментальное исследование ветрового волнения в центральной части Каспийского моря // Инженерная физика. 2007. № 6. С. 40-47.

Поступила в редакцию 25.03.2013 г. Принята к печати 18.12.2013 г.