УДК 536.17

ТЕРМИЧЕСКИЕ СВОЙСТВА БИНАРНОЙ СИСТЕМЫ СОСТАВА 0.987 ВОДА+0.013 н-ПЕНТАН

С. М. Расулов, И. А. Исаев

Институт физики им. Х.И. Амирханова ДНЦ РАН

Экспериментально исследованы термические свойства бинарной системы состава 0.987 вода + 0.013 н-пентан (мол. доли) в интервале температур 310–674 К, до давлений 60 МПа в широком диапазоне плотностей вдоль 10 различных изохор. Исследования охватывают область фазовых равновесий углеводородная жидкость – пар и водная жидкость – пар. Получены линии фазовых равновесий и критические точки этой системы, построены фазовые диаграммы.

Thermal properties of the water+n-pentane binary mixture (0.987 and 0.013 mole fraction correspondingly) are researched in temperature intervals from 310 K to 675 K and at ambient pressure up to 60 MPa in a wide range of densities along 10 different isochors. The researches cover the region of hydrocarbon liquid – vapor, aqueous liquid – vapor phase equilibriums, and supercritical region. The lines of phase equilibria and critical points of this mixture are obtained.

Ключевые слова: *PVT*-свойства; н-пентан; вода; критическое состояние; критическая точка.

Keywords: PVT-properties; water; n-pentane; critical state; critical points.

Введение

Термические свойства смесей углеводородов с водой при высоких температурах и давлениях представляют практический интерес для нефтехимической промышленности (повышение нефтеотдачи, удаление углеводородов из воды, прогнозирование содержания углеводородов в геологических жидкостях, перекачка нефтепродуктов по трубопроводам), органической химии, геологич, минералогии, биологии, новых сепарационных процессов и др. В природе углеводороды часто находятся в контакте или даже в смеси с водой. Существующие теоретические модели [1–4] описывают общие закономерности фазового поведения таких систем, но не позволяют сделать количественную оценку фазовых равновесий даже для бинарных систем углеводород – вода, поэтому экспериментальные исследования смесей углеводородов с водой различного состава представляются актуальными.

Учитывая сложность фазового поведения в многокомпонентных смесях, закономерности фазового поведения целесообразно изучать на основе двойных систем, состоящих из воды и компонентов нефти. Анализ и систематизация двойных систем позволяют выявить закономерности поведения многокомпонентных систем.

PVT-свойства бинарной системы н-пентан-вода исследовались в работах [5–11, 13]. Настоящая работа является продолжением этих исследований на примере изучения бинарной смеси состава 0.987 вода + 0.013 н-пентан (мол. доли) при температурах 310-674 К и давлениях до 60 МПа методом определения изломов на изохорических кривых *P*-*T* с использованием пьезометра постоянного объема.

Экспериментальная часть

Измерения *PVT*-свойств бинарной смеси н-пентан – вода осуществлены с помощью пьезометра постоянного объема [12], представляющего собой сосуд высокого давления и включающего трубку из нержавеющей стали 12X18H10T (внутренний диаметр 8.721 \pm 0.003 мм, длина 394 мм, толщина стенки 2.7 мм, шероховатость внутренней поверхности не более 2.4 мкм). На одном торце сосуда установлен мембранный нуль-датчик давления (чувствительность 0.005 МПа), на другом – запорный вентиль, который служит для заполнения пьезометра. Для выравнивания температуры вдоль пьезометра на сосуд посредством горячей прессовки надет массивный медный блок. На торцах и в средней части медного блока просверлены отверстия для размещения контрольных и измерительных термопар и термосопротивления ПТС-10. Нагрев осуществляется трехсекционной печью высотой 500 мм. Температура регулируется автоматически с помощью трех терморегуляторов ВРТ-3: один терморегулятор поддерживает общую температуру системы с погрешностью 0.01 К, два других обеспечивают нулевой градиент температуры вдоль трубки. Погрешность измерения температуры составляет ± 0.014 К. Падающий груз *6* также изготовлен из стали 12Х18Н10Т и имеет форму цилиндра с конусовидными концами. В центре груза установлен постоянный магнит, который удерживает груз в верхнем положении благодаря включенному электромагниту. При отключении электромагнита груз свободно падает вниз, перемешивая исследуемую жидкость. Поворот системы на 180° возвращает груз в исходное положение.

Давление в объеме пьезометра регистрируется мембранным датчиком и измеряется стрелочным образцовым манометром (при P < 1 МПа) и грузопоршневым манометром МП-600 (при $P > 1~{
m MIa}$) с точностью 0.05%. Объем пьезометра, определяемый калибровкой по воде, составляет 21.160±0.025 см³ при температуре 20°С. Для учета изменения объема пьезометра в зависимости от температуры и давления вносились поправки. Вся система устанавливалась на полуосях и могла свободно поворачиваться на 180°. Для компенсации теплоотвода по полуосям на них наматывался нагреватель, мощность которого регулировалась в зависимости от показаний дифференциальной термопары. Заполнение пьезометра проводилось под вакуумом через вентиль на торце пьезометра. Запорный вентиль имел два автономных выхода для вакуумирования пьезометра и заправки его жидкостью с помощью двух капилляров из нержавеющей стали. Один капилляр соединялся с вакуумным насосом, а конец второго капилляра с пробкой опускался в пикнометр с исследуемой жидкостью. После вакуумирования системы вакуумный выход закрывался, удалялась пробка со второго капилляра и открывался выход для заправки. При этом раствор полностью перетекал из пикнометра в пьезометр. Нагревание пикнометра до 70-80°C обеспечивало прохождение всей жидкости в пьезометр. После этого закрывался выход для заправки. Для того чтобы убедиться, что вся жидкость втянулась в пьезометр, измерялась масса пикнометра до и после заправки.

Компоненты смеси взвешивались на аналитических весах с погрешностью не более 0.5 мг. Для подготовки смеси были использованы деаэрированная вода двойной дистилляции и нпентан марки «х.ч.».

Измерения *PVT*-свойств системы состава 0.013н-пентан + 0.987вода были проведены в широкой области параметров состояния для 10 значений плотности смеси в диапазоне 96.94–707.6 кг/м³ (имеются в виду усредненные плотности, полученные как отношение всей массы загрузки к объему пьезометра).

Результаты и их обсуждение

Результаты измерений представлены на рис. 1 и приведены в табл. 1 и 2. На P-T диаграмме вдоль каждой изохоры наблюдаются два перегиба или излома, соответствующие фазовым переходам: первый излом при более низкой температуре – переходу углеводородной жидкости (раствор воды в углеводороде – π_1) в пар $[(\pi_1-r)\rightarrow r]$ или трехфазного расслаивания (r- $\pi_1-\pi_2$) в двухфазное равновесие $[\pi_1/r-\pi_2]$, а второй – переходу водной жидкости (водный раствор углеводорода – π_2) в пар $[(\pi_2-r)\rightarrow r]$ или двухфазного равновесия ($r-\pi_2$ или r_1-r_2) в гомогенный сверхкритический флюид (фл) $[(\pi_2-r)$ или (r_1-r_2)-фл].

Рис. 1. Экспериментальная зависимость давления от температуры смеси $0.987H_2O + 0.013H-C_5H_{12}$ (мол. доли) вдоль изохор: 1 - 96.94 кг/м³; 2 - 193.9 кг/м³; 3 - 290.8 кг/м³; 4 - 387.8 кг/м³; 5 - 484.69 кг/м³; 6 - 581.6 кг/м³; 7 - 613.6 кг/м³; 8 - 644.8 кг/м³; 9 - 678.56 кг/м³; 10 - 707.6 кг/м³

Рис. 2. Кривые фазовых равновесий углеводородная жидкость – газ (1) и водная жидкость – газ смеси $0.987H_2O + 0.013H-C_5H_{12}$ (мол. доли)

По перегибам и изломам на P-T проекциях изохор смеси определены линии фазовых равновесий углеводородная жидкость – пар и водная жидкость – пар. На рис. 2 представлены линии фазовых превращений углеводородная жидкость – пар ($\pi_1-\pi_2-\Gamma\rightarrow\pi_2-\Gamma$) (нижняя кривая) и водная жидкость – пар ($\pi_2-\Gamma/\Gamma_1-\Gamma_2\rightarrow\pi_2/\Gamma/\Phi_1$) (верхняя кривая) для исследуемой системы, численные значения которых для каждой изохоры приведены в табл. 2. Очевидно, что эти кривые показывают температурный интервал существования двухфазного сверхкритического (для пентана) равновесия, которое возникает в смеси исследуемого состава при завершении гетерогенных равновесий с участием углеводородной жидкости (нижняя кривая) и заканчивается образованием гомогенного раствора в окрестности критической температуры воды (верхняя кривая).

Эти кривые фазовых превращений углеводородная жидкость – газ, а также параметры верхней конечной критической точки расслаивания в системе н-пентан – вода получены впервые.

ρ = 0.0969 κг/m ⁸		ρ = 0.1939 кг/м ⁸		ρ = 0.2908 кг/м ³		$ρ = 0.3878 \text{ kg/m}^3$	
<i>Т</i> , К	<i>P</i> , MPa	<i>T</i> , K	<i>P</i> , MPa	<i>Т</i> , К	<i>P</i> , MPa	<i>T</i> , K	<i>P</i> , MPa
311.49	0.04	351.84	0.328	363.19	0.482	365.15	0.518
322.95	0.102	356.16	0.379	370.05	0.565	391.73	1.028
336.94	0.118	358.66	0.406	372.65	0.6	397.36	1.216
350.63	0.149	362.87	0.439	375.66	0.64	404.66	1.334
354.75	0.157	365.86	0.447	381.15	0.702	410.03	1.393
359.79	0.173	372.91	0.479	383.74	0.739	422.17	1.7
363.66	0.178	375.41	0.494	386.16	0.781	446.36	2.098
368.61	0.19	385.15	0.565	390.69	0.835	468.88	2.716
376.42	0.212	401.45	0.777	395.52	0.867	494.45	3.736
388.36	0.279	427.87	1.167	398.55	0.904	516.38	5.118
412.01	0.453	454.6	1.677	405.62	1	541.17	7.216
438.37	0.848	477.27	2.432	418.94	1.216	562.93	9.452
461.35	1.374	502.24	3.539	442.45	1.677	584.44	12.295
485.84	2.236	525.37	4.932	465.56	2.354	609.05	16.098
512.65	3.559	546.77	6.657	489.07	3.216	621.61	18.275
536.77	5.236	573.06	9.354	513.27	4.52	625.65	19.177
557.09	7	593.4	12.196	536.55	6.275	632.8	20.696
582.95	9.991	605.37	14	562.55	8.618	636.4	21.413
591.66	11.137	612.95	15.354	583.78	11.275	638.59	21.795
597.28	12.118	619.86	16.539	605.98	14.472	642.6	22.5
604.44	13.137	622.46	17.295	617.66	16.579	648.84	23.795
607.34	13.677	626.44	17.972	622.26	17.657	659.97	26.598
610.53	14.216	631.88	19.275	626.26	18.5	674.71	30.137
614.7	14.913	634.81	20	629.61	19.2	ρ = 0.4847 KΓ/M ⁸	
620.97	15.834	636.56	20.295	634.26	20.492	312.45	0.044
624.09	16.295	640.43	20.854	637.59	21.196	335.51	0.2
630.72	17.118	644.43	21.618	641.84	21.992	368.12	0.549
641.37	18.334	646.59	22	649.4	23.177	391.82	1.02
653.74	19.677	652.46	23.098	656.38	24.579	398.57	1.275
667.52	21.275	659.12	24.295	664.64	26.118	400.69	1.295
675.9	22.255	677.19	27.677	675.33	28.255	401.79	1.314
ρ = 0.1939 кг/м ³		ρ = 0.2908 кг/м ³		ρ = 0.3878 кг/м⁸		408.21	1.432
311.18	0.043	312.39	0.044	312.32	0.044	413.43	1.579
337.04	0.212	338.03	0.228	337.37	0.222	426.94	2.039

Таблица 1. Экспериментальные РрТ-параметры смеси 0.987вода + 0.013н-пентан

ρ = 0.4847 κг/м ³		ρ = 0.5816 кг/м ³		ρ = 0.6495 кг/м³		ρ = 0.6786 кг/м ³	
<i>Т</i> , К	P, MPa	<i>Т</i> , К	<i>P</i> , MPa	<i>Т</i> , К	P, MPa	<i>Т</i> , К	P, MPa
448.77	2.736	613.04	21.775	473.21	4.795	546.37	13.098
472.14	3.677	621.43	24.157	498.96	6.795	571.8	18.795
497.63	4.972	623.67	25.177	521.64	8.874	583.48	24.393
518.45	6.413	624.85	26.314	545.01	11.952	585.4	25.432
541.54	8.472	626.34	27.157	569.54	16.216	587.25	26.795
566.72	11.078	ρ = 0.61	36 кг/м ³	591.2	22.755	593.57	30.5
590.54	14.5	313.46	0.0431	602.6	28.559	605.79	39.636
593.06	14.893	337.16	0.207	597.95	25.618	615.1	47.925
615.54	19.716	364.86	0.518	599.02	26.216	621.48	55.039
623.5	20.498	389.5	1	600.52	27.078	623.7	57.598
629.87	21.677	392.35	1.0983	602.3	27.696	626.84	61.286
631.37	21.913	394.79	1.177	604.49	29.275	ρ = 0.707	<u>6 кг/м³ (6 кг/м</u>
633.93	22.491	397.75	1.256	606.97	31.157	311.5	0.04
637.08	23.118	401.15	1.344	611.55	34.452	337.32	0.21
639.29	23.913	406.95	1.491	621.59	42.854	365.38	0.521
641.19	24.716	412.4	1.716	624.4	44.874	370.44	0.61
643.26	25.539	424.99	2.265	631.44	337.32	376.27	0.714
653.33	28.913	450.66	3.432	639.19	56.847	380.79	0.8
663.77	32.844	473.66	4.598	644.01	60.388	384.32	0.871
674.53	36.393	496.85	6.216	ρ = 0.6 ′	786 кг/м ⁸	389.31	1
$\rho = 0.5816 \ \kappa r/m^3$		520.9	8.236	309.65	0.037	392.77	1.0983
309.59	0.036	544.4	10.775	337.86	0.21	397.46	1.236
338.65	0.212	566.94	14.098	365.86	0.531	400.21	1.324
362.11	0.5	590.09	18.893	372.47	0.604	404.61	1.432
390.32	1.039	596.41	20.598	377.26	0.706	410.52	1.677
395.75	1.196	603.82	22.952	383.59	0.828	422.91	2.216
399.19	1.275	607.27	23.814	389.37	1	446.09	3.539
400.77	1.334	608.82	24.196	394.3	1.157	470.45	4.991
405.78	1.452	611.28	25.196	395.54	1.196	493.69	6.834
413.36	1.696	613.71	26.314	399.89	1.314	517.82	9.913
424.04	2.196	614.98	27.078	403.94	1.413	542.17	13.539
449.27	3.236	621.57	31.696	409.61	1.637	564.61	21.295
472.6	4.314	628.65	35.991	416.19	1.913	589.27	37
494.74	5.677	634.45	40.5	429.7	2.5	598.52	45.393
518.66	7.579	640.99	44.854	453.19	3.736	602.65	50.991
542.22	9.952	649.15	50.854	477.2	5.275	605.62	53.118
565.89	12.854	655.72	55	500.84	7.137	610.32	57.374
589.59	16.657	663.49	60.254	523.31	9.5	613.71	60.991

На рис. З в координатах P-T представлена линия фазовых превращений двухфазных равновесий (г-ж₂) и (г₁-г₂) с участием существенно водного раствора при увеличении температуры в гомогенный сверхкритический флюид (фл), которая имеет S-образный вид с минимумом и максимумом температуры. Она соприкасается с критической кривой (г = ж₂) в одной точке. Точка касания с критической кривой и есть критическая точка ($\Gamma = \pi_2$) для системы заданного состава 0.013н-пентан + 0.987вода, плотность которой определяется из веса загрузки и объема пьезометра. Эта критическая точка находится между температурными экстремумами экспериментальной кривой на рис. 3. Для меньших концентраций воды критические точки двойной системы расположены ближе к температурному минимуму, а для бо́льших концентраций воды – ближе к максимуму. Критические параметры для исследуемой смеси состава 0.013н-пентан + 0.987вода имеют следующие значения: $T(\Gamma = \pi_2) = 637.10$ K; $P(\Gamma = \pi_2) = 23.75$ МПа и $\rho = 485$ кг/м³. Эта точка указана стрелкой на критической кривой (на рис. 4), исходящей из критической точки воды (K2), а также на рис. 3.

Таблица 2. Температура и давление перехода углеводородная жидкость – газ (T_1 , P_1) и водная жидкость – газ (T_2 , P_2) смеси 0.987вода+0.013н-пентан

ρ κг/м ³	<i>T</i> ₁ , K	P_1 , МПа	<i>T</i> ₂ , K	<i>P</i> ₂ , МПа
96.94	324.16	0.108	616.92	15.324
193.9	363.15	0.445	635.21	20.047
290.8	388.19	0.821	637.27	21.284
387.8	398.82	1.278	638.15	21.652
484.69	398.89	1.280	637.83	23.289
581.6	397.83	1.242	623.15	24.63
613.6	396.25	1.22	612.42	25.465
644.8	394.25	1.15	603.83	28.89
678.56	391.65	1.082	606.56	40.345
707.6	389.35	1.05	610.19	57.33

Рис. 3. Экспериментальная P-T зависимость кривой фазового равновесия жидкость – газ смеси $0.987H_2O$ + $0.013H-C_5H_{12}$ (мол. доли): 1 – пограничная кривая жидкость – газ (наши данные); 2 – линия фазового равновесия жидкость – газ чистой воды [15]; 3 – [5] и 4 – наши данные – верхняя часть критической линии

Рис. 4. *T-X* фазовая диаграмма системы вода – нпентан: 1 – трехфазная линия равновесия ($\mathfrak{m}_1 - \mathfrak{m}_2 - r$) \rightarrow [$\mathfrak{m}_1(\mathfrak{m}_2) - r$]; 2 – нижняя область критической линии; 3 – трехфазная линия равновесия ($\mathfrak{m}_1 - \mathfrak{m}_2 - r$) \rightarrow [$r(\mathfrak{m}_1) - \mathfrak{m}_2$]; 4 – верхняя область критической линии; 5 – трехфазная линия равновесия ($\mathfrak{m}_1 - \mathfrak{m}_2 - r$) \rightarrow [$\mathfrak{m}_2(\mathfrak{m}_1) - \mathfrak{m}_2$]

Согласно классификации фазовых диаграмм Скотта и Ван Кониненбурга [14] исследуемая система относится к III типу и характеризуется отсутствием непрерывной критической кривой, соединяющей критические точки чистых компонентов. Фазовая диаграмма III типа разбивается на 3 температурные области: область нижней ветви критических точек ($\kappa_1 = r$), область отсутствия критических точек и область верхней ветви критических точек ($r_1 = r_2$, $r = \kappa_2$). Исследуемый нами состав системы попадает в область концентраций верхней ветви критических точек. Здесь и далее мы употребляем общепринятое выражение «газ – газ» [5, 6], а не «пар – пар».

На рис. 4 представлена фазовая T-X диаграмма системы вода – н-пентан, построенная с использованием экспериментальных данных, полученных в этой работе и статьях [5, 6]. Нижняя моновариантная кривая критических точек ($\pi_1 = \Gamma$) 2 начинается в критической точке чистого углеводорода (K1) и заканчивается в верхней конечной критической точке расслаивания (ВККТ) при 463.8 К и 4.5 МПа. Гетерогенность равновесия ВККТ (г = $\pi_1 - \pi_2$) при отсутствии надежных сведений о плотности и составах сосуществующих фаз позволяет использовать лишь усредненные значения плотности смеси растворов (485 кг/м³) для нанесения этого равновесия на фазовые диаграммы.

Верхняя критическая кривая (ж₂ = г, г₁ = г₂) 4 начинается в критической точке воды (К2) и, проходя через температурный минимум, направлена в область высоких температур и давлений. Между этими критическими кривыми находится область отсутствия критических точек, где существует гомогенный раствор или двухфазное равновесие (два равновесных раствора), а переход от сверхкритического (СК) пара к СК жидкоподобному раствору (при повышении давления) происходит непрерывно без критических явлений. Точка, соответствующая температурному минимуму верхней критической кривой, называется двойной гомогенной точкой или двойной критической точкой (ДКТ) и разделяет кривую и примыкающие к ее частям (со стороны более низких температур) двухфазные области (ж – г и г₁ – г₂) на два разных равновесия. Правая часть этой критической кривой на рис. 4 соответствует газовожидкому равновесию ($\mathfrak{m}_2 = \Gamma$), а левая часть – равновесию газ – газ ($\Gamma_1 = \Gamma_2$) второго типа, которое продолжается и выше критической температуры воды. На Р-Т диаграмме область фазового равновесия газ – газ ограничена критической кривой жидкости (ж₁) и пара (г) (380-460 К) и кривой гомогенизации высокотемпературных двухфазных равновесий в окрестности критической кривой (ж₂ = г, г₁ = г₂) (570-630 К), исходящей из критической точки воды (К2), в координатах *T*-ρ, где ρ – усредненная плотность (отношение массы загрузки к объему пьезометра) ($\Gamma_1 = \Gamma_2$), идущей от ДКТ в сторону более высоких температур и давлений, и изотермой, идущей от ДКТ в сторону высоких давлений.

Кривая 1 (рис. 4) отвечает составу жидкой органической фазы (\mathfrak{m}_1), находящейся в трехфазном равновесии $\mathfrak{m}_1 - \mathfrak{m}_2 - \mathfrak{r}$. Состав второй жидкой фазы (\mathfrak{m}_2) показан прямой 5, проведенной через одну экспериментальную точку в области высокого содержания воды. Горизонтальная прямая 3 соответствует нонвариантному равновесию ВККТ ($\mathfrak{m}_1 = \mathfrak{r} - \mathfrak{m}_2$) и соединяет составы критической фазы ($\mathfrak{m}_1 = \mathfrak{r}$) и некритической жидкой фазы (\mathfrak{m}_2).

Двойная критическая точка (согласно [5, 10]) соответствует составу с 75.487% масс. H₂O, ее критические параметры равны соответственно: $T(\Pi KT) = 625.5 \text{ K}$; $P(\Pi KT) = 33.7 \text{ MIA}$. ДКТ разделяет фазовую P-T диаграмму в окрестности высокотемпературной критической кривой системы на две части. Нижняя часть (по давлению) отвечает равновесию жидкость – пар, а верхняя соответствует равновесию газ – газ.

Полученные значения температуры и давления линии фазового равновесия газ и ее критические параметры находятся в хорошем согласии с имеющимися в литературе [5, 6, 9].

Более детальная интерпретация полученных экспериментальных данных в настоящее время не представляется возможной в связи с отсутствием прямых определений составов и объемных свойств равновесных фаз.

Заключение

Термические свойства системы состава 0.013н-пентан + 0.987 вода (мол. доли) получены для 10 значений плотности смеси. На каждой изохоре P-T диаграммы обнаружено по два излома, соответствующих фазовым переходам. По перегибам и изломам на изохорах в P-T диаграмме определено фазовое поведение равновесий углеводородная жидкость – пар и водная жидкость – пар. Фазовая диаграмма соответствует III типу согласно классификации Скотта и Ван Кониненбурга. Исследованный нами состав системы попадает в область концентраций верхней ветви критических точек. Полученная P-T диаграмма при постоянном составе имеет S-образный вид с минимумом и максимумом температуры. Критическая точка ($r = \pi_2$) заданного состава находится между этими экстремумами и имеет параметры T = 637.10 K; P = 23.75 МПа; $\rho = 485$ кг/м³.

ЛИТЕРАТУРА

1. Victorov A.I., Frederslund A.A., Smirnova N.A. Fluid phase equilibria in water: natural Gas component mixtures and their description by the hole group-contribution of state // Fluid Phase Equil. 1991. Vol. 66. P. 187.

2. Crossover between vapor-liquid and consolute critical phenomena / M.A. Anisimov, E.E. Gorodetskii, V.D. Kulikov, J.V. Sengers // Phys. Rev. E. 1995. Vol. 51, N 2. P. 1199.

3. Christoforakos M., Franck E.U. An equation of state binary fluid mixtures to high temperatures and high pressures // Ber. Bunsenges. Phys. Chem. 1986. Vol. 90. P. 780.

4. Abdulkadirova Kh.S., Khokhlachov S.P. Prediction of phase equilibria in hydrocarbon+near-critical solvent systems // Fluid Phase Equil. 1997. Vol. 140. P. 73.

5. De Loos Th.W., van Dorp J.H., Lichtenthaler RN. Phase equilibria and critical phenomena in fluid (n-alkane +water) systems at high pressures and temperatures // Fluid Phase Equil. 1983. Vol. 10. P. 279.

6. Brunner E. Fluid mixtures at high pressures. IX. Phase separation and critical phenolmena in 23 (n-alkane +water) mixtures // J. Chem. Thermodyn. 1990. Vol. 22. P. 335.

7. Gillespie P.C., Wilson G.M. Vapor – Liquid and Liquid – Liquid Equilibria: Water – Methane; Water – Carbon Dioxide; Water – Hydrogen Sulfide; Water – *n*-Pentane; Water – Methane – *n*-Pentane. Gas Processors Association, Research Report (RR-48), USA, 1982. 73 p.

8. Roof J.G. Three phase critical point in hydrocarbon-water systems // J. Chem. and Eng. Data. 1970. Vol. 15, N 2. P. 301.

9. Connoly J.F. Solubility of hydrocarbons in water near the critical solution temperatures // J. Chem and Eng. Data. 1966. Vol. 11, N 1. P. 13.

10. Расулов С.М., Расулов А.Р. РVТ-данные и фазовое равновесие системы н-пентан вода // Журн. физ. химии. 2009. Т. 83, № 5. С. 756-759.

11. *Расулов С.М.* Фазовое равновесие системы вода – н-пентан в области верхнего локуса критических точек // Журн. физ. химии. 2010. Т. 84, № 11. С. 2193–2196.

12. *Расулов С.М., Хамидов М.М.* Установка для одновременного измерения давления, температуры, объема и вязкости жидкостей и газов // Приборы и техника эксперимента. 1999. № 1. С. 148.

13. Расулов С.М., Исаев И.А. Фазовое равновесие и критические линии в системах н-пентан – вода и н-гексан – вода // Теплофизика высоких температур. 2006. Т. 44, № 6. С. 847.

14. Van Konynenburg P.H., Scott R.L. Critical lines and phase equilibria in binary Van der Waals mixtures // Phil. Trans. Roy. Soc. London. 1980. Vol. 298, N A1442. P. 495.

> Поступила в редакцию 08.10.2013 г. Принята к печати 28.09.2014 г.

=